Projet 0

Défi 1 : référentiel et mouvements

- 1. Définir une procédure qui permet de faire marcher le lutin « chat » sur un trajet en forme de carré
- 2. Utiliser la bibliothèque « Stylo » pour que le lutin « chat » trace un trait continu sur sa trajectoire

Défi 2 : définir ses propres blocs

1. Définir un nouveau bloc personnel qui permet de dessiner un carré dont le côté a la dimension que l'on veut.

On pourra changer la valeur de la longueur du côté du carré.

Projet 1

Dans le projet <u>https://scratch.mit.edu/projects/551441110</u>, un robot jardinier est chargé d'arroser les légumes avec un certain volume d'eau. Le « potager » est représenté sur l'illustration ci-dessous.

L'axe horizontal en rouge sur l'écran désigne les positions horizontales du robot (négatives à gauche, positives à droite).

Défi 3 : référentiel XY

a) Sur la capture d'écran, écris les positions approximatives du robot s'il se trouve aux positions suivantes :

- A : position 0
- B : position +120
- C : position -120
- D : position +200
- E : position -200

b) On pourrait tracer également un axe vertical (appelé « y ») qui passerait par le centre de l'écran. **Dessine cet axe avec le point « 0 » au centre de l'écran.**

Défi 4 : répéter n fois et procédures

https://scratch.mit.edu/projects/551441110

Le programme qui permet au robot d'arroser est représenté ci-contre.

- 1. Exécute le programme pour que le robot arrose les courgettes :
 - trois fois
 - cinq fois

Les nombres 3 et 5 n'apparaissent pas dans le programme. Pourtant, ils s'y cachent à trois endroits différents. **Indique par une flèche où sont ces trois endroits.**

2. En utilisant la même méthode que pour les courgettes, **écris la procédure pour arroser les salades puis pour arroser les carottes**.

Astuces :

- 1. Tu vas devoir « créer un bloc » pour les salades puis pour les carottes.
- 2. Tu peux « dupliquer » un programme existant par un clic droit sur une tuile.

Défi 5 : utilisation de la « réponse » sous Scratch

1. Écris la procédure pour apprendre au robot à arroser les trois sortes de légumes à la suite.

Pour chaque légume, le robot

- · demande de combien de litres il doit se charger puis
- il se dirige vers le potager où il arrose le carré de légumes
- il revient à sa base
- · demande de combien de litres il doit se charger
-

2. Variante : le robot demande d'abord le nombre de litres pour chaque légume puis fait le travail comme ci-dessus, **mais sans s'interrompre**. Pourquoi la procédure ci-contre ne fonctionne-t-elle pas ? Note la réponse ci-dessous.

Défi 6 : notion de variable

Pour que le robot se souvienne du nombre de litres d'eau à verser sur chaque légume, il doit utiliser sa mémoire RAM.

La personne chargée de la programmation (toi) doit donc prévoir trois zones dans lesquelles il pourra « retenir » ces informations.

Pour ne pas tout confondre, chacune de ces zones est repérée par un nom.

À RETENIR : une zone de la mémoire RAM repérée par un nom et dans laquelle on peut déposer une information est appelé UNE VARIABLE en informatique.

https://scratch.mit.edu/projects/552512001

Dans l'illustration ci-contre,

- I'opérateur du robot a indiqué le nombre de litres d'eau dans la « réponse »
- · la valeur de la « réponse » est déposée dans la variable « eau courgettes »
- le robot utilise la valeur de « eau courgettes » pour arroser.
- 1. Définis maintenant les variables nécessaires pour l'arrosage des carottes et des salades. Donne-leur le meilleur nom possible.
- 2. Crée la procédure qui indiquera au robot comment arroser les trois sortes de légumes à la suite, sans s'interrompre.

Astuce : Tu vas devoir créer deux nouvelles variables

Défi 7 : « regrouper » pour afficher du texte

Mettre en place les trois ensembles de tuiles illustrés ci-contre :

1. Comment fonctionne la tuile « regrouper » ?

https://scratch.mit.edu/projects/552512521

2. Modifier la procédure « arroser Courgettes » pour que le robot annonce le nombre de litres d'eau qu'il va verser. Il faut utiliser correctement la tuile « regrouper ».

Le robot ne doit annoncer qu'une seule fois ce nombre de litres.

Défi 8 : installer un compteur

À Bruxelles, des compteurs de vélos sont placés le long des pistes cyclables. À chaque passage d'un vélo, le nombre indiqué au compteur est augmenté de 1.

On peut aussi compter le nombre de litres versés dans la procédure « arroser Courgettes ». Il nous faut une **variable supplémentaire**. Appelons-la « compteur ».

Dans le « répéter », on demande au robot de dire la valeur du « compteur ».

https://scratch.mit.edu/projects/552512732

1. Dans la procédure « version 1 », on ajoute une unité au compteur à chaque tour. Fonctionne-t-elle correctement ? La réponse est « non ». Quel est le bug ?

2. Quelle valeur faut-il déposer dans la variable « compteur » à l'endroit de la flèche sur l'illustration de la version 2 ci-contre ?

3. Modifie les deux autres procédures d'arrosage en ajoutant un compteur.

Projet 2 : avec un capteur d'humidité

Défi 9 : un capteur pour piloter le robot

Un capteur d'humidité du sol a été installé dans le parterre des carottes. Lorsque le taux d'humidité devient trop faible (< 50), un robot intervient et verse une certaine quantité d'eau.

https://scratch.mit.edu/projects/551571928

Il est aussi possible de faire intervenir le robot manuellement en cliquant sur le bouton bleu.

La quantité d'eau versée par le robot est indiquée dans la variable « eau carottes ». Dans l'illustration, cette variable a la valeur 3. Le robot versera donc chaque fois 3 litres d'eau. Mais ce nombre est modifiable.

1. Examiner le code du « compteur » et faire en sorte que le robot n'intervienne que lorsque le taux d'humidité devient inférieur à 30.

Le « compteur » n'est pas relié à un vrai capteur. Le dessèchement de la terre est simulé par le programme qui pilote le « compteur ».

2. Faire en sorte que la simulation du dessèchement de la terre soit plus rapide. Comment faire ?

Astuce : un nombre « aléatoire » est un nombre choisi « au hasard » par l'ordinateur.

Défi 10 : modification d'une variable

Dans la version de base du programme, la quantité d'eau pour les carottes est toujours de 3 litres. On voudrait pouvoir changer cette valeur.

1. Où cette valeur est-elle retenue ?

2. On voudrait qu'il soit possible de demander à l'utilisateur de changer cette quantité lorsque l'on clique sur l'image des carottes.

3. On voudrait qu'il soit possible de définir les quantités d'eau de la même façon pour chaque légume.

Défi 11 : les objets s'envoient des messages

Dans le code du bouton bleu, on trouve la commande Quel composant est capable de capter ce message ? Quel autre composant est capable d'envoyer ce message ? Que fait ce composant à la réception du message ? Que fait ce composant à la réception du message ?

Défi 12 : ET / OU

Examiner le code du bouton bleu en bas et à droite du potager.

La première condition est « souris pressée ? » ET « touche 'pointeur de souris' ? ».

- 1. Souris pressée signifie que le bouton gauche a été cliqué
- 2. Touche le pointeur de souris : le bouton est entré en contact avec le pointeur de souris (ou inversement).

Il faut que les deux conditions soient remplies (ET).

Pourrait-on remplacer l'expression par

souris pressée ? ou touche le pointeur de souris 🔹 ?

(OU) ? Quel serait l'effet ? Vérifier.

Défi 13 : Utilisation d'un « drapeau ».

Une variable « drapeau » permet de retenir qu'un événement s'est produit.

Dans le code du bouton bleu, on vérifie que

- 1. Que se passe-t-il si « Arrosage en cours » n'est pas égal à 0 ?
- 2. Quel composant est capable de changer la valeur de cette variable ?
- 3. Quel pourrait être l'intérêt de cette variable « drapeau » ?

Que se passerait-il si l'on cliquait le bouton bleu pendant un arrosage si ce drapeau n'existait pas ?

Défi 14 : changer de costume

Dans la version de base du programme, le « compteur » du capteur d'humidité est fixe.

Examiner le code du compteur. Repérer la tuile

et la procédure « Choix

Costume » cachée à droite.

1. Où faut-il introduire la tuile « Choix Costume » dans le code du « Compteur » ? On veut que l'aiguille descende régulièrement quand le sol se dessèche et qu'elle passe au rouge quand l'humidité devient < 50.

2. Que faut-il indiquer dans le paramètre de la procédure « Choix Costume » ?

Défi 15 : synthèse globale

Le potager dispose maintenant d'un capteur d'humidité pour chaque légume.

https://scratch.mit.edu/projects/552665995

On demande de faire en sorte que la mesure du dessèchement du sol provoque l'arrosage du légume correspondant.

Pour réaliser ce défi, tu devras :

- · utiliser le « sac à dos » pour reproduire les procédures des carottes
- utiliser une variable pour chaque mesure d'humidité (regarde les variables déjà disponibles)
- · adapter chacune des procédures pour les différents légumes

Table des matières

Projet 0	1
Défi 1 : référentiel et mouvements	1
Défi 2 : définir ses propres blocs	2
Projet 1	3
Défi 3 : référentiel XY	3
Défi 4 : répéter n fois et procédures	4
Défi 5 : utilisation de la « réponse » sous Scratch	5
Défi 6 : notion de variable	6
Défi 7 : « regrouper » pour afficher du texte	7
Défi 8 : installer un compteur	8
Projet 2 : avec un capteur d'humidité	9
Défi 9 : un capteur pour piloter le robot	9
Défi 10 : modification d'une variable	10
Défi 11 : les objets s'envoient des messages	11
Défi 12 : ET / OU	12
Défi 13 : Utilisation d'un « drapeau »	13
Défi 14 : changer de costume	14
Défi 15 : synthèse globale	15